
W eather forecast services in the United States

 are mostly provided to users free of charge by

 the government. The economic justification 

for this approach is that weather forecasts belong to 

a class of goods that economists call “public goods.” 

These are goods that would typically be undersup-

plied and underused in the absence of public provi-

sion.1 However, there are many competing uses for 

public funds, and it is appropriate to ask whether 

value is being received for funds expended on weather 

forecasts. It is also appropriate to ask whether the 

incremental value from improved forecasting ca-

pabilities justifies the extra cost in providing these 

capabilities. The present study provides some of the 

important information needed to answer these kinds 

of questions.

This study estimates the cost savings (i.e., benefits 

or value) attributable to temperature forecasts used 

by the U.S. electricity generation industry in plan-

ning how to produce electricity up to 24 h ahead in 

time. The focus is on temperature because it is the 

key weather variable affecting the demand for elec-

tricity, particularly in regions of the country where 

there is heavy use of air conditioning.2 Accurate 

temperature forecasts can improve the accuracy of 

electricity demand forecasts, and better demand 

forecasts can lower electricity production costs. This 

is true because electricity is typically produced by a 

variety of generating units with different lead times 

to be readied for service, costs of being readied for 

service, and production costs once in service. Having 

the best mix of generating units available at the right 

time saves money.

The paper begins with a discussion of relevant 

results from the earlier work by Hobbs et al. (1999), 
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1 See Gunasekera (2004) for an elaboration of these ideas as 

they apply to weather forecasts.

2 Other aspects of weather that may affect electricity demand, 

though to a much lesser extent, include clouds, wind, and 

humidity.
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which estimates the savings in electricity generation 

costs from improvements in electricity demand fore-

casts. Next, our estimates of the relationship between 

the quality of temperature forecasts and the quality 

of electricity demand forecasts is presented for four 

different temperature forecasts at six sites around 

the United States. Using these results in conjunction 

with the Hobbs et al. (1999) work makes it possible to 

estimate the cost savings from different temperature 

forecasts at these sites. These site-specific cost sav-

ings are then extrapolated to estimate total benefits, 

and incremental benefits, for the United States as a 

whole. A concluding section presents some further 

discussion of our results.

COST SAVINGS FROM IMPROVED ELEC-
TRICITY DEMAND (OR LOAD) FORECASTS. 
The costs of generating electricity are lower with a 

good forecast of electricity demand, or electricity load, 

as it is sometimes called. Such cost savings can be un-

derstood as the avoided costs of errors that result from 

inaccurate forecasts. For example, it is often true that 

generating units with shorter production lead times 

have higher production costs. Thus, if a load forecast is 

too low, long lead-time units will not have been made 

ready, and the more expensive short lead-time units 

will be pressed into service to supply the unanticipated 

demand. Alternatively, if a load forecast is too high, 

long lead-time units may be readied for production 

unnecessarily, and the costs of doing so are incurred 

unnecessarily. These are only a couple of the possible 

scenarios that produce higher costs if load forecasts 

are inaccurate.

In the short run, higher costs would reduce the 

generating company’s operating profits. In the longer 

run, however, higher production costs tend to pro-

duce higher electricity prices for consumers, due to 

competition, which is an increasingly important fac-

tor in the electricity industry. Regardless of who bears 

the burden of increased costs, they represent a net loss 

to the U.S. economy insofar as resources are expended 

unnecessarily to supply electricity demand.

A study by Hobbs et al. (1999) estimates cost sav-

ings in electricity generation from better forecasts of 

electricity loads. In the Hobbs et al. study, actual loads 

and forecasted loads were obtained for two utility 

systems—one northeastern and one southern. These 

forecasted loads were produced by a model developed 

by the Electric Power Research Institute and used by 

a number of electricity generators (Khotanzad et al. 

1995, 1998). Greater or lesser forecasting accuracy 

was simulated by scaling the actual forecast errors 

(up or down), thereby creating alternative forecasts 

with identical distributional characteristics, but dif-

fering accuracies.

These simulated load forecasts were then evalu-

ated in the context of two alternative specifications of 

generating systems that might be employed to meet 

the electricity demand. These systems are referred 

to as Bard and Shaw, after the primary authors of 

the published papers from which the generating sys-

tem specifications were obtained (Bard 1988; Shaw 

1995, respectively). The result of the simulation is 

four relationships between the simulated forecast 

error and the economic cost associated with that 

error—one relationship for each load forecast (North 

and South) and one for each generating system (Bard 

and Shaw). These four relationships are shown in 

Fig. 1, which is reproduced from Hobbs et al. (1999) 

with permission.3

The cost increases due to load forecast inaccuracy 

range from about 0.35% to 0.85%, for example, when 

the mean absolute percentage error (MAPE) of the 

load forecast is 5%. At most values of MAPE, this 

cost increase is significantly higher for the southern 

load and for the Bard generating system. Of course, 

the cost of forecast inaccuracy for either region and 

generating system is lower when MAPE is lower (and 

it is zero if MAPE is zero, i.e., the forecast is perfect). 

Hobbs et al. (1999) note that for a system with a 

typical $20 per megawatt hour (MWh)-averaged 

production cost, the annual losses from forecast 

inaccuracy would range from about $600 to $1,500 

per megawatt (MW).4

FIG. 1. Load estimation errors increase costs.

3 This is Hobbs et al.’s (1999) original Fig. 3, which has been 

very slightly modified for clarity of exposition.
4 Hobbs et al.’s (1999) calculations here are percentage savings 

(0.35%–0.85%) times annual cost per megawatt. Annual cost 

per megawatt is the average cost per megawatt hour ($20) 

times the annual hours of operation (8760).
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TEMPERATURE FORECASTS AND DE-
MAND FORECASTS. To use the results in the 

Hobbs et al. (1999) study to assign value to the tem-

perature forecasts used in electric power generation, 

it is necessary to estimate the relationship between 

the temperature forecast accuracy and load forecast 

accuracy. This is done using a proprietary neural 

network–based load forecaster provided by Pattern 

Recognition Technologies, Inc. (Dallas, Texas). This 

load forecaster, like the model used in the Hobbs et al. 

study, is initially “trained” using data on actual loads 

and other variables that are predictive of loads. In 

our analysis, these other variables were the previous 

day’s load, temperature, and temperature forecast for 

the current day. After training, the model is used to 

predict next day loads using the predictive variables 

as inputs.

Our analysis requires data on actual electric loads 

and corresponding location-specific temperature ob-

servations and forecasts for a number of locations in 

the United States. Such data are available, but only for a 

limited number of sites. From the available alternatives, 

six were chosen; these were located in Vermont, Ohio, 

Florida, Texas, southern California, and Washington. 

This set of sites provides reasonable geographic cover-

age of the continental United States and encompasses 

a wide range of differing climatic conditions. Because 

electric utility companies consider the electric load 

data to be proprietary, the specific power systems used 

and the raw data itself cannot be disclosed.

The temperature forecast data for the chosen sites 

were obtained from DTN Online (www.dtnonline.
com is a Web-based provider of a wide variety of data, 

including weather forecast data). These data consist 

of temperature forecasts obtained from a National 

Weather Service (NWS) computer model known as 

the model output statistics (MOS) aviation guidance 

(MAV; see Dallavalle et al. 2004). MAV includes 

forecasts, at 3-h intervals, for temperature and other 

weather variables for specific geographic locations. 

These forecasts are provided both to NWS for use in 

constructing official forecasts and to private sector 

meteorologists.5

To investigate the implications of better-or-worse 

temperature forecast accuracy, three additional fore-

casts are constructed. Two of these, the persistence 

and perfect forecasts, are constructed to span the 

full spectrum of forecast quality. The persistence 

forecast uses today’s actual temperature as a forecast 

for tomorrow’s temperature; it is a naïve forecast 

that requires no skill. The perfect forecast uses 

tomorrow’s actual temperature as today’s forecast 

for tomorrow, and obviously represents perfect skill 

in forecasting.

The third forecast constructed is intended to 

represent the official NWS forecast. This forecast is 

the raw MAV, improved slightly to reflect the typi-

cal improvements made by human forecasters when 

they adjust the raw MAV to arrive at official NWS 

forecasts. To construct this forecast, recent forecaster 

improvements over MAV, in the next day’s maximum 

temperature forecast, are averaged for the 7 a.m. and 

7 p.m. (local time) forecasts of the preceding day. The 

average forecaster improvements are 7.0% (NWS 

Eastern Region), 10.5% (NWS Southern Region), and 

11.4% (NWS Western Region). These improvements 

are applied, respectively, to MAVs for the Vermont 

and Ohio sites, the Florida and Texas sites, and the 

southern California and Washington sites, to con-

struct the NWS forecasts.6

Using approximately 2 yr of data available for each 

of the six sites in the study, the load forecasting model 

was trained on the first year’s data, and then run for 

the second year’s data to obtain the results used in this 

study. Table 1 shows the load forecast error results for 

the six sites. For comparison, the load forecast errors 

reported by Hobbs et al. (1999) from their northeast-

ern and southern sites are also reported.

There are a couple of things to note in Table 1. 

First, the percentage reduction in MAPE for the 

NWS forecast relative to the persistence forecast 

is very similar for the four nonwestern sites, rang-

ing from 27% (Ohio) to 35% (Florida and Texas). 

However, error reduction is notably smaller for the 

western sites (2% for southern California and 13% for 

Washington). These observations suggest that 24-h 

5 Strictly speaking, the NWS does not call MAV computer model outputs a “forecast,” but instead refers to them as “guidance.” 

This is to make clear the distinction between these numbers and the official forecasts of the NWS. However, MAV outputs are 

NWS products that are made available for use by the public, including electric utilities that use them for forecasting future 

electric loads. Thus, this paper takes the liberty of loosely referring to the MAV outputs as forecasts, even though they are 

formally called guidance.
6 Our data show considerable variation across local NWS offices in forecaster improvements over the MAV forecasts, and it 

is also possible that there is considerable variation over time for a given office. Because the objective here is to estimate the 

value of the temperature forecasts on a national basis, the regional-averaged forecaster improvement rates are used.
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temperature forecasts are not as important for elec-

tricity producers in the West as they are elsewhere. 

Also, the consistency across nonwestern sites for the 

MAPE reduction is an encouraging suggestion that 

MAPE reductions in these parts of the country may 

not be highly sensitive to site choice.

The second thing to note in Table 1 is that, for 

the NWS forecast case, the load forecast errors for 

Florida (3.48) and Texas (3.98) are quite similar to 

those for the Hobbs et al. (1999) southern site (3.9); 

but, the load forecast errors for Vermont (2.01) and 

Ohio (3.36) are much lower than for the Hobbs et al.’s 

northeastern site (5.4). This is of interest because 

the Hobbs et al. study indicates that the benefits of 

MAPE reductions are smaller when the initial MAPE 

is smaller, and when the site is a northern site. Low 

MAPEs in this study’s northern sites will tend to 

reduce the estimated benefits of NWS forecasts for 

these sites. However, because the benefits of MAPE 

reduction tend to be smaller anyway for northern 

sites, any downward bias from lower initial MAPEs 

for the northern sites will matter less because these 

are northern sites.

THE VALUE OF TEMPERATURE FORE-
CASTS IN UNITED STATES ELECTRICAL 
GENERATION. Having now established the con-

nection between alternative temperature forecasts 

and electricity load forecast errors, the work of Hobbs 

et al. (1999) can be used to calculate cost savings from 

these alternative temperature forecasts. From this, 

estimates can be made of the overall national benefit 

of NWS forecasts, as well as the 

additional benefit that might be re-

alized from further improvements 

relative to the NWS forecasts.

Hobbs et al. (1999) estimated 

four relationships (see Fig. 1) be-

tween the load forecast error and the 

economic cost of that error—one 

relationship for each of two regions 

(North and South) and one for each 

of two types of generating systems 

(Bard and Shaw). Hobbs et al.’s two 

relationships (Bard and Shaw) for 

their North region are used to esti-

mate cost savings from alternative 

weather forecasts at our Vermont, 

Ohio, and Washington sites, and 

the results are then averaged over 

the Bard and Shaw systems at each 

site. Similarly, Hobbs et al.’s rela-

tionships for their South region are 

used at our Florida, Texas, and southern California 

sites, and the results are averaged over the Bard and 

Shaw systems. This procedure produces percentage 

cost increases (relative to MAPE = 0) for each of our 

six sites and each forecast. Last, cost increases for al-

ternative forecasts are subtracted at each site to obtain 

site-specific cost reductions from better forecasts. 

These cost reductions are reported in Table 2.

Three steps are now required to estimate cost re-

ductions for the United States as a whole from the data 

in Table 2. First, the site-specific results in Table 2 

are averaged to get region-specific-estimated cost 

reductions for three U.S. regions identified as North, 

South, and West. Next, electricity generation data are 

obtained for these three regions, and an average pro-

duction cost is applied to these generation amounts 

to estimate the generation costs by region. Finally, 

these regional generation costs are multiplied by the 

region-specific cost reductions from better forecasts, 

and these results are aggregated over regions to arrive 

at estimates of the U.S. national cost savings from bet-

ter temperature forecasts. The details of these steps 

are explained below.

The site-specific cost reductions in Table 2 are 

averaged for the Vermont and Ohio sites to estimate 

cost reductions for our North region. Similarly, cost 

reductions in Table 2 are averaged for the Florida and 

Texas sites, and for the Washington and southern 

California sites, to estimate cost reductions for our 

South and West regions, respectively.

United States electricity generation data for our 

three regions are developed from Energy Information 

TABLE 1. MAPE for six sites and alternative weather forecasts.

Persistence MAV NWS Perfect

Vermont 2.94 2.04 2.01 1.78

Ohio 4.58 3.40 3.36 2.56

Florida 5.43 3.65 3.48 2.54

Texas 6.14 4.19 3.98 2.66

Southern California 3.13 3.31* 3.08 1.82

Washington 2.83 2.56 2.47 2.14

Hobbs et al.’s Northeast 5.4

Hobbs et al.’s South 3.9

* Here the MAV produces a larger MAPE than does the persistence forecast. But, 
note that the MAPEs each represent one particular year at one particular loca-
tion. We suspect that occasional deviant results like this are probably chance 
occurrences, rather than an indication of systematic failure of the MAV to do 
better than a naïve forecast at this location. More data would be required to 
confirm this hypothesis.
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Administration data on electric utility net genera-

tion by census division and state for the year 2002. 

(see Energy Information Administration 2003).7 For 

our north region, the following census regions are 

aggregated: New England, mid-Atlantic, East–North-

central, and West–North-central. Similarly, for our 

South region, the South Atlantic, East–South-central, 

West–South-central, census regions are aggregated. 

The Mountain census region is split, with Arizona 

and New Mexico included in our South region, while 

the remaining states are included in our North region. 

The Pacific census region is also split with Alaska, 

included in the North, while the rest of the region 

(California, Oregon, Washington, and Hawaii) is 

aggregated into our West 

region. Af ter these ag-

gregations and divisions, 

about 1,367,000 million 

KWh (54%) of electric-

ity generation is located in 

our South, 974,000 million 

KWh (38%) in our North, 

and 206,000 (8%) in our 

West regions.

For the average produc-

tion cost of electricity, the 

number cited by Hobbs 

et al. (1999) as a typical 

cost—$20 per million watt 

hours—is used. This is 

equivalent to $20,000 per 

million killowatt hours (the 

units used for the electricity 

generation numbers above). 

Thus, the regional elec-

tricity generation amounts 

above are multiplied by 

$20,000 to produce the fol-

lowing estimated operating 

costs by region: $27.34 bil-

lion (South), $19.48 billion 

(North), and $4.13 billion (West).

Finally, these generation costs are multiplied by 

the estimated cost reductions through the use of 

better weather forecasts. This last set of calculations 

is summarized in Table 3.8

It is also possible to estimate the incremental 

benefits that are obtainable from improvements in 

forecasts starting from the current NWS forecast 

accuracy. For relatively small improvements in cur-

rent forecast accuracy, this incremental benefit is 

estimated using the difference in benefits between 

the NWS forecast and the MAV forecast. This benefit 

increase is then divided by the percentage improve-

ment in forecast accuracy between the NWS forecast 

TABLE 2. Percentage cost reductions for improved weather forecasts.

NWS vs persistence 
forecast

NWS vs MAV 
forecast

Perfect vs NWS 
forecast

Vermont 0.086 0.003 0.022

Ohio 0.092 0.003 0.061

Florida 0.488 0.037 0.180

Texas 0.592 0.055 0.277

Southern California 0.013 0.051 0.188

Washington 0.030 0.009 0.033

7 Utility net generation is about two-thirds of total U.S. net generation. Nonutility net generation is excluded, because it is 

primarily for industrial use, and demand for it is likely to be less weather-sensitive. There is also likely to be less f lexibility 

in the nonutility sector to commit units differently, depending on the weather forecast.
8 The results in Table 3 are obviously point estimates, and it would be nice to know how sensitive they might be to changes in 

the data that are used to get them. To determine this fully would require a lot of data that are not available. However, it is pos-

sible to get some feel for the possible range around the point estimates in Table 3 by recalculating results alternately using the 

higher (lower) of Hobbs et al.’s (1999) Bard and Shaw system curves in Fig. 1, and the higher (lower) of our two site-specific 

cost savings estimates for each region. When these experiments are carried out, our results for the NWS versus persistence 

forecast swing up (down) by about $50 million per year (or 30%), while those for the perfect versus NWS forecast swing up 

(down) by about $30 million per year (or 40%).

TABLE 3. Benefits of weather forecast improvements.

Operating 
cost (million 

dollars)

NWS vs persistence 
forecast

Perfect vs NWS forecast

Cost 
reduction 
(percent)

Benefits (million 
dollars per year)

Cost 
reduction 
(percent)

Benefits (million 
dollars per year)

North 19,478 0.0892 17.37 0.0419 8.17

South 27,341 0.5400 147.66 0.2286 62.50

West 4,127 0.0224 0.92 0.1105 4.56

Total 165.95 75.23
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and the MAV forecast to get the incremental benefit 

per percentage point improvement in accuracy. These 

incremental benefits are shown below in the last 

column of Table 4.

To value larger improvements in forecast accuracy, 

it is necessary to account for the fact that the benefits 

of forecast accuracy are a nonlinear function of accu-

racy. To account for this, a second-degree polynomial 

is fit to the four data points (perfect, NWS, MAV, and 

persistence) estimated for each region. Figure 2 shows 

the data points and fitted polynomials for the three 

regions. The fitted polynomial functions can then 

be used to estimate the percentage cost reductions in 

each region if the temperature error is reduced, for 

example, by one full degree Celsius starting from the 

current NWS error levels (the second set of points to 

the right of the origin on the horizontal axis). These 

cost reductions are then applied to the estimated 

costs to get the benefit of a 1°C improvement. The 

calculations, shown in Table 5, indicate that a 1°C 

improvement in forecast accuracy is worth about $59 

million per year.9

DISCUSSION OF RESULTS. The NWS fore-

cast produces a total U.S. benefit of $166 million per 

year, relative to the persistence forecast. Of this total 

benefit, $148 million is estimated to come from the 

South region. There are several reasons why most of 

the benefit comes from southern systems. First, a little 

more than half of the country’s electricity is gener-

ated in the South region. Second, Hobbs et al.’s (1999) 

results indicate that the cost of a given load estimation 

error is roughly twice as high for their representative 

southern system as for their northeastern system. 

Third, the amount of load uncertainty (measured by 

MAPE with the NWS forecasts) is 39% higher for the 

South region than for the North, and 34% higher for 

the South than the West. Most importantly, however, 

the estimated reduction in MAPE from better tem-

perature forecasts is much greater for the South re-

gion. On average, the MAPE reduction in going from 

a persistence forecast to the NWS forecast is almost 

twice as great in the South region as in the North (2.05 

versus 1.08 percentage points), and almost 10 times as 

great in the South region as in the West (2.05 versus 

.21 percentage points). Presumably, this is due to the 

fact that air conditioning is a more important element 

of demand in the South, and temperature forecasts are 

primarily helpful in predicting electricity demanded 

for air conditioning.

The benefit from having a perfect forecast to replace 

the NWS forecast is estimated to be $75 million per 

year. This implies that about 70% of the total poten-

tial benefits of a perfect forecast versus a persistence 

forecast have already been realized by using the cur-

rent NWS forecast. This is presumably due, in part, to 

the fact that the NWS forecasts are pretty good, and 

partly due to the fact that the incremental benefits 

of forecast improvements 

are highest for the initial 

improvements, and then 

decline as the forecast ap-

proaches perfection.

The incremental benefit 

of an improvement in fore-

cast accuracy is estimated 

to be about $1.4 million 

per percentage point of im-

provement per year. For a 

larger 1°C improvement 

in accuracy, the benefit is 

about $59 million per year.

TABLE 4. Incremental benefits of one percentage point weather forecast 
improvement.

Operating 
cost (million 

dollars)

NWS vs MAV forecast

Cost 
reduction 
(percent)

Benefits 
(million dollars 

per year)

Percentage 
forecast 

improvement

Benefit per 
percent (million 

dollars)

North 19,478 0.0030 .58 7 .082

South 27,341 0.0459 12.55 10.5 1.195

West 4,127 0.0299 1.24 11.4 .108

Total 14.36 1.386

9 If this calculation is performed for a 1°F forecast accuracy improvement, the benefit is $37 million per year.

FIG. 2. Percentage cost reduction depends on error in 
temperature forecast.
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Incremental benefits are relevant in assessing the 

merits of investments that will improve forecast accu-

racy. Sometimes investments that improve accuracy 

may be essentially one-time investments. In such 

cases, it would be appropriate to compare the cost 

of the investment to the present value of all future 

benefits from improved accuracy. These present value 

benefits would be $28 million for a 1% improvement 

in accuracy, and $1.2 billion for a 1°C improvement 

in accuracy, using a 5% discount rate over an infinite 

time horizon.10

In industries that are especially weather-sensitive, 

private meteorologists (or private meteorological ser-

vices) are sometimes employed to produce forecasts 

tailored to the special requirements of the users in 

those industries. To decide whether paying for such 

privately provided forecasts makes sense, it would be 

appropriate to compare the cost of these forecasts to 

the economic benefit expected from the improvement 

in forecast accuracy. The results in Table 4 provide 

a rough estimate of the possible benefit per percent-

age point improvement in accuracy for electricity 

generators in the U.S. North, South, or West. To get 

a more accurate estimate, it would be necessary for 

an electricity generator to replicate the analysis pre-

sented here for the specific area that it serves and for 

the specific generating alternatives available to it.

Finally, it should be noted that the foregoing 

estimates only reflect the benefits of relatively short-

term temperature forecasts used in scheduling units 

for next-day generation. There are additional elec-

tric utility benefits of weather forecasts that are not 

included in the above numbers, notably the value of 

multiday forecasts in scheduling maintenance. Thus, 

the estimated benefits from the temperature forecasts 

presented here certainly understate the total benefits 

realized by the electricity-generating industry from 

weather forecasts.
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